Matrices M6: Cramer's Rule

Simplify the following:

1.
$$\begin{bmatrix} 3 & -2 \\ 5 & 4 \end{bmatrix} + \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix}$$
 2. $2 \cdot \begin{bmatrix} 3 & -2 \\ 5 & 4 \end{bmatrix}$ 3. $\begin{bmatrix} 3 & -2 \\ 5 & 4 \end{bmatrix} \times \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix}$

Use Cramer's Rule to solve each system of equations.

4.
$$\begin{array}{c} x = y + 7 \\ y = 2x - 8 \end{array}$$
 5. $\begin{array}{c} x - y = 6 \\ 2x + 2y = 12 \end{array}$ 6. $\begin{array}{c} 3x + y = 6 \\ 5x + 2y = 4 \end{array}$

7.
$$x + y = 7$$

 $2x + 3y = 18$
8. $2x + 3y = 10$
 $3x + 5y = 17$
9. $5x - 2y = 14$
 $3x + 4y = -2$

10. Find the solution of the system of linear equations using Cramer's Rule.

4x + 2y = 8 $x - 5y = 2$			
a) (1, 2)	b) (3, -1)	c) (2, 0)	d) (1, 1)